Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Zea Orozco, Juan Manuel"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Desarrollo de un algoritmo para la detección e identificación de fallas en motores eléctricos a partir de señales de audio
    (Institución Universitaria Pascual Bravo, 2023) Zea Orozco, Juan Manuel; Fonnegra Tarazona, Ruben Dario; Briñez de León, Juan Carlos
    Este proyecto tiene como objetivo principal desarrollar un algoritmo binario de clasificación de fallas en motores eléctricos utilizando señales de audio y técnicas de machine learning. Se propone estructurar una base de datos que contenga información pública y recolectada, con el fin de tener datos representativos del funcionamiento regular y anómalo de motores eléctricos. El enfoque se centra en implementar un algoritmo que pueda identificar y clasificar las diferentes fallas presentes en los motores eléctricos utilizando modelos de inteligencia artificial. Se busca aprovechar las capacidades de aprendizaje automático para entrenar algoritmos que puedan reconocer patrones y características específicas asociadas para determinar si existe o no existe falla. Una vez desarrollado el algoritmo, se realizará una evaluación de su desempeño utilizando métricas computacionales ampliamente utilizadas en este tipo de tareas. Estas métricas permitirán cuantificar la precisión, el F1 score, la matriz de confusión y otras medidas relevantes para evaluar la capacidad de clasificación y detección de fallas del algoritmo implementado. El resultado de este proyecto contribuirá al avance en el diagnóstico de fallas en motores eléctricos, al proporcionar un método basado en el análisis de señales de audio y el uso de algoritmos de deep learning. Esto puede tener aplicaciones importantes en la industria, permitiendo una detección temprana de fallas y un mantenimiento preventivo más efectivo en los motores eléctricos.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback