Análisis y diseño de sistemas térmicos Aplicaciones en disipadores de calor y gasificadores de biomasa

dc.contributor.authorOlmos Villalba, Luis Carlos
dc.contributor.authorHincapié Montoya, Jhon Fredy
dc.contributor.authorDelgado Mejía, Álvaro
dc.contributor.authorLenis Rodas, Yuhan Arley
dc.contributor.authorMorales Rojas, Andrés David
dc.date.accessioned2023-03-08T16:48:12Z
dc.date.available2023-03-08T16:48:12Z
dc.date.issued2022-12-22
dc.description.abstractEn este libro, podrás encontrar metodologías para el diseño y análisis de sistemas térmicos, especialmente para gasificadores y disipadores de calor. Metodologías que van de la mano de herramientas computacionales y de nuevas estrategias que permiten optimizar estos sistemas. En los primeros dos capítulos se presentan dos métodos para mejorar el desempeño térmico de disipadores de calor; jugando con la modificación del área superficial, en los que, además, se realiza un análisis térmico, mediante software de fuente abierta y comercial con el objetivo de mostrar las bondades de cada uno. En el tercer capítulo se plantea un estudio detallado para el diseño y análisis de gasificadores de cascarilla de arroz de lecho fijo, en el que se definen algunas consideraciones derivadas de la experiencia acumulada por el equipo de investigadores de la Institución Universitaria Pascual Bravo, donde se dan a conocer aquellos parámetros característicos del proceso.spa
dc.description.sponsorshipFondo Editorial Pascual Bravospa
dc.format.extent90spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.isbn978-958-53606-7-9
dc.identifier.urihttps://repositorio.pascualbravo.edu.co/handle/pascualbravo/1845
dc.language.isospaspa
dc.publisherFondo Editorial Pascual Bravospa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeMedellínspa
dc.relation.ispartofseriesInvestigación;
dc.rightsinfo:eu-repo/semantics/openAccessspa
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2spa
dc.rights.creativecommonshttps://creativecommons.org/licenses/by-nc/4.0/spa
dc.rights.urihttps://creativecommons.org/licenses/by-nd/4.0/spa
dc.sourceInstitución Universitaria Pascual Bravospa
dc.subject.keywordEngineering, heat, biomass, thermal, energyspa
dc.subject.proposalIngeniería, calor, biomasa, térmica, energíaspa
dc.subject.unescoIngeniería térmica
dc.titleAnálisis y diseño de sistemas térmicos Aplicaciones en disipadores de calor y gasificadores de biomasaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2f33spa
dc.type.driverinfo:eu-repo/semantics/bookspa
dc.type.hasversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.localLibrospa
dc.type.redcolhttps://purl.org/redcol/resource_type/LIBspa
dcterms.referencesAhmed, H. E. Kherbeet, A. Sh. & Ahmed, M. I. (2018). Optimization of thermal design of heatsinks: A review. International Journal of Heat and Mass Transfer, 118, 129–153. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.099
dcterms.referencesArif, M., Kango, S. & Shukla, D. K. (2022). Analysis of textured journal bearing with slip boundary condition and pseudoplastic lubricants. International Journal of Mechanical Sciences, 228, 107458. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2022.107458
dcterms.referencesBallesteros, L. M., Zuluaga, E., Cuervo, P., Rudas, J. S. & Toro, A. (2021). Tribological behavior of polymeric 3D-printed surfaces with deterministic patterns inspired in snake skin morphology. Surface Topography: Metrology and Properties, 9(1), 014002. https://doi.org/10.1088/2051-672x/abe211
dcterms.referencesBelhocine, A. & Bouchetara, M. (2013). Thermal behavior of full and ventilated disc brakes of vehicles. Journal of Mechanical Science and Technology, 26. https://doi.org/10.1007/s12206-012-0840-6
dcterms.referencesCengel, Y. A. & Ghajar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (McGraw-Hill, Ed.; 5th ed.). McGraw-Hill.
dcterms.referencesCucumo, M., Ferraro, V., Kaliakatsos, D. & Marinelli, V. (2014). Theoretical and experimental analysis of the performances of a heat sink with vertical orientation in natural convection. International Journal of Energy and Environmental Engineering, 8. https://doi.org/10.1007/s40095-014-0144-y
dcterms.referencesDatabase, T. R. (2021). Python regius (SHAW, 1802).
dcterms.referencesGachot, C., Rosenkranz, A., Hsu, S. M. & Costa, H. L. (2017). A critical assessment of surface texturing for friction and wear improvement. Wear, 372–373, 21–41. https://doi.org/https://doi.org/10.1016/j.wear.2016.11.020
dcterms.referencesGarimella, S. V, Fleischer, A. S., Murthy, J. Y., Keshavarzi, A., Prasher, R., Patel, C., Bhavnani, S. H., Venkatasubramanian, R., Mahajan, R., Joshi, Y., Sammakia, B., Myers, B. A., Chorosinski, L., Baelmans, M., Sathyamurthy, P. & Raad, P. E. (2008). Thermal Challenges in Next-Generation Electronic Systems. IEEE Transactions on Components and Packaging Technologies, 31(4), 801–815. https://doi.org/10.1109/TCAPT.2008.2001197
dcterms.referencesGarro-Acón, S., Díaz-Espinoza, L. A., Liang, J., Martínez-Hernández, F., Meneses-Fuentes, W., Ortega-Padilla, H., Ramírez-Chaves, G. & Stradi-Granados, B. (2012). Modelación y simulación de disipadores de calor para procesadores de computadora en COMSOL Multiphysics. Revista Tecnología en Marcha, 25(3 SE-Artículo científico). https://doi.org/10.18845/tm.v25i3.459spa
dcterms.referencesGurrum, S., Suman, S., Joshi, Y., & Fedorov, A. (2003). Thermal Issues in Next Generation Integrated Circuits (pp. 659–664). https://doi.org/10.1115/IPACK2003-35309
dcterms.referencesGururatana, S. (2012). Heat Transfer Augmentation for Electronic Cooling. American Journal of Applied Sciences, 9, 436–439. https://doi.org/10.3844/ajassp.2012.436.439
dcterms.referencesIsmail, F., Rashid, M. A. I. & Mahbub, M. (2011). CFD Analysis for Optimum Thermal Design of Carbon Nanotube Based Micro-Channel Heatsink. Engineering Journal, 15, 11–22. https://doi.org/10.4186/ej.2011.15.4.11
dcterms.referencesKhattak, Z. & Ali, H. M. (2019). Air cooled heat sink geometries subjected to forced flow: A critical review. International Journal of Heat and Mass Transfer, 130, 141–161. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.048
dcterms.referencesLu, L., Zhang, Z., Guan, Y. & Zheng, H. Y. (2018). Enhancement of Heat Dissipation by Laser Micro Structuring for LED Module. Polymers, 10, 886. https://doi.org/10.3390/polym10080886
dcterms.referencesMatMatch. (2022). AA Standards Grade 6062. https://matmatch.com/es/materials/alky160620790-aa-standards-grade-6062
dcterms.referencesNarasimhan, S. & Majdalani, J. (2002). Characterization of compact heat sink models in natural convection. Components and Packaging Technologies, IEEE Transactions On, 25, 78–86. https://doi.org/10.1109/6144.991179
dcterms.referencesRamírez-Gil, F. J., Delgado-Mejía, Á., Foronda-Obando, E. y Olmos-Villalba, L. C. (2022). Thermal finite element analysis of complex heat sinks using open source tools and high-performance computing. Revista Facultad de Ingeniería Universidad de Antioquia, 0 SE-Research paper. https://doi.org/10.17533/udea.redin.20220888
dcterms.referencesSato, A. I., Altemani, C. A. C. & Scalon, V. L. (2020). MEAN NUSSELT NUMBER CORRELATION FOR TISE HEATSINK THERMAL DESIGN. Revista de Engenharia Térmica; Vol 19, No 1 (2020) DO - 10.5380/Reterm.V19i1.76427
dcterms.referencesStaliulionis, Z., Zhang, Z., Pittini, R., Andersen, M., Tarvydas, P. & Noreika, A. (2014). Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications. Elektronika Ir Elektrotechnika, 20, 49–54. https://doi.org/10.5755/j01.eee.20.1.6167
dcterms.referencesTarvydas, P., Noreika, A. & Staliulionis, Z. (2013). Analysis of Heat Sink Modelling Performance. Elektronika Ir Elektrotechnika, 19(3 SE-), 43–46. https://doi.org/10.5755/j01.eee.19.3.3695
dcterms.referencesUnni, R. & Majali, V. (2019). A review on rectangular heat sinks under natural convection
dcterms.referencesVentola, L., Scaltrito, L., Ferrero, S., Maccioni, G., Chiavazzo, E. & Asinari, P. (2014). Micro-structured rough surfaces by laser etching for heat transfer enhancement on flush mounted heat sinks. Journal of Physics: Conference Series, 525, 12017. https://doi.org/10.1088/1742-6596/525/1/012017
dcterms.referencesWu, Z., Bao, H., Xing, Y. & Liu, L. (2021). Tribological characteristics and advanced processing methods of textured surfaces: a review. The International Journal of Advanced Manufacturing Technology, 114. https://doi.org/10.1007/s00170-021-06954-2
dcterms.referencesAhmed, H. E. Kherbeet, A. Sh. & Ahmed, M. I. (2018). Optimization of thermal design of heat sinks: A review. International Journal of Heat and Mass Transfer, 118, 129–153. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.099
dcterms.referencesArif, M., Kango, S. & Shukla, D. K. (2022). Analysis of textured journal bearing with slip boundary condition and pseudoplastic lubricants. International Journal of Mechanical Sciences,228, 107458. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2022.107458
dcterms.referencesBallesteros, L. M., Zuluaga, E., Cuervo, P., Rudas, J. S. & Toro, A. (2021). Tribological behavior of polymeric 3D-printed surfaces with deterministic patterns inspired in snake skin morphology. Surface Topography: Metrology and Properties, 9(1), 014002. https://doi.org/10.1088/2051-672x/abe211
dcterms.referencesBelhocine, A. & Bouchetara, M. (2013). Thermal behavior of full and ventilated disc brakes of vehicles. Journal of Mechanical Science and Technology, 26. https://doi.org/10.1007/s12206-012-0840-6
dcterms.referencesCengel, Y. A. & Ghajar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (McGraw-Hill, Ed.; 5th ed.). McGraw-Hill.
dcterms.referencesCucumo, M., Ferraro, V., Kaliakatsos, D. & Marinelli, V. (2014). Theoretical and experimental analysis of the performances of a heat sink with vertical orientation in natural convection. International Journal of Energy and Environmental Engineering, 8. https://doi.org/10.1007/s40095-014-0144-y
dcterms.referencesDatabase, T. R. (2021). Python regius (SHAW, 1802).
dcterms.referencesGachot, C., Rosenkranz, A., Hsu, S. M. & Costa, H. L. (2017). A critical assessment of surface texturing for friction and wear improvement. Wear, 372–373, 21–41. https://doi.org/https://doi.org/10.1016/j.wear.2016.11.020
dcterms.referencesGarimella, S. V, Fleischer, A. S., Murthy, J. Y., Keshavarzi, A., Prasher, R., Patel, C., Bhavnani, S. H., Venkatasubramanian, R., Mahajan, R., Joshi, Y., Sammakia, B., Myers, B. A., Chorosinski, L., Baelmans, M., Sathyamurthy, P. & Raad, P. E. (2008). Thermal Challenges in Next-Generation Electronic Systems. IEEE Transactions on Components and Packaging Technologies, 31(4), 801–815. https://doi.org/10.1109/TCAPT.2008.2001197
dcterms.referencesGarro-Acón, S., Díaz-Espinoza, L. A., Liang, J., Martínez-Hernández, F., Meneses-Fuentes, W., Ortega-Padilla, H., Ramírez-Chaves, G. & Stradi-Granados, B. (2012). Modelación y simulación de disipadores de calor para procesadores de computadora en COMSOL Multiphysics. Revista Tecnología en Marcha, 25(3 SE-Artículo científico). https://doi.org/10.18845/tm.v25i3.459spa
dcterms.referencesGurrum, S., Suman, S., Joshi, Y., & Fedorov, A. (2003). Thermal Issues in Next Generation Integrated Circuits (pp. 659–664). https://doi.org/10.1115/IPACK2003-35309
dcterms.referencesGururatana, S. (2012). Heat Transfer Augmentation for Electronic Cooling. American Journal of Applied Sciences, 9, 436–439. https://doi.org/10.3844/ajassp.2012.436.439
dcterms.referencesIsmail, F., Rashid, M. A. I. & Mahbub, M. (2011). CFD Analysis for Optimum Thermal Design of Carbon Nanotube Based Micro-Channel Heatsink. Engineering Journal, 15, 11–22. https://doi.org/10.4186/ej.2011.15.4.11
dcterms.referencesKhattak, Z. & Ali, H. M. (2019). Air cooled heat sink geometries subjected to forced flow: A critical review. International Journal of Heat and Mass Transfer, 130, 141–161. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.048
dcterms.referencesLu, L., Zhang, Z., Guan, Y. & Zheng, H. Y. (2018). Enhancement of Heat Dissipation by Laser Micro Structuring for LED Module. Polymers, 10, 886. https://doi.org/10.3390/polym10080886
dcterms.referencesMatMatch. (2022). AA Standards Grade 6062. https://matmatch.com/es/materials/alky160620790-aa-standards-grade-6062
dcterms.referencesNarasimhan, S. & Majdalani, J. (2002). Characterization of compact heat sink models in natural convection. Components and Packaging Technologies, IEEE Transactions On, 25, 78–86. https://doi.org/10.1109/6144.991179
dcterms.referencesRamírez-Gil, F. J., Delgado-Mejía, Á., Foronda-Obando, E. y Olmos-Villalba, L. C. (2022). Thermal finite element analysis of complex heat sinks using open source tools and high-performance computing. Revista Facultad de Ingeniería Universidad de Antioquia, 0 SE-Research paper. https://doi.org/10.17533/udea.redin.20220888
dcterms.referencesSato, A. I., Altemani, C. A. C. & Scalon, V. L. (2020). MEAN NUSSELT NUMBER CORRELATION FOR TISE HEATSINK THERMAL DESIGN. Revista de Engenharia Térmica; Vol 19, No 1 (2020) DO - 10.5380/Reterm.V19i1.76427
dcterms.referencesStaliulionis, Z., Zhang, Z., Pittini, R., Andersen, M., Tarvydas, P. & Noreika, A. (2014). Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications. Elektronika Ir Elektrotechnika, 20, 49–54. https://doi.org/10.5755/j01.eee.20.1.6167
dcterms.referencesTarvydas, P., Noreika, A. & Staliulionis, Z. (2013). Analysis of Heat Sink Modelling Performance. Elektronika Ir Elektrotechnika, 19(3 SE-), 43–46. https://doi.org/10.5755/j01.eee.19.3.3695
dcterms.referencesUnni, R. & Majali, V. (2019). A review on rectangular heat sinks under natural convection
dcterms.referencesVentola, L., Scaltrito, L., Ferrero, S., Maccioni, G., Chiavazzo, E. & Asinari, P. (2014). Micro-structured rough surfaces by laser etching for heat transfer enhancement on flush mounted heat sinks. Journal of Physics: Conference Series, 525, 12017. https://doi.org/10.1088/1742-6596/525/1/012017
dcterms.referencesWu, Z., Bao, H., Xing, Y. & Liu, L. (2021). Tribological characteristics and advanced processing methods of textured surfaces: a review. The International Journal of Advanced Manufacturing Technology, 114. https://doi.org/10.1007/s00170-021-06954-2
dcterms.referencesBasu, P. (2010). Gasification Theory and Modeling of Gasifiers. In Biomass Gasification Design Handbook (pp. 117–165). Elsevier. https://doi.org/10.1016/B978-0-12-374988-8.00005-2
dcterms.referencesBharath, M., Raghavan, V., Prasad, B. V. S. S. S. & Chakravarthy, S. R. (2018). Co-gasification of Indian rice husk and Indian coal with high-ash in bubbling fluidized bed gasification reactor. Applied Thermal Engineering, 137(March), 608–615. https://doi.org/10.1016/j.applthermaleng.2018.04.035
dcterms.referencesBridgwater, A. V. V. (1995). The technical and economic feasibility of biomass gasification for power generation. Fuel, 74(5), 631–653. https://doi.org/10.1016/0016-2361(95)00001-L
dcterms.referencesCastello, A. (2014). Diseño de un reactor continuo de gasificación de biomasa. Universidad de Chilespa
dcterms.referencesFernández, J. (2007). Las energías renovables. Energías renovables-Energía de la biomasa,(1), 20spa
dcterms.referencesGokon, N., Ono, R., Hatamachi, T., Liuyun, L., Kim, H. J. & Kodama, T. (2012). CO2 gasification of coal cokes using internally circulating fluidized bed reactor by concentrated Xelight irradiation for solar gasification. International Journal of Hydrogen Energy, 37(17),12128–12137. https://doi.org/10.1016/j.ijhydene.2012.05.133
dcterms.referencesHarting, J., Frijters, S., Ramaioli, M., Robinson, M., Wolf, D. E. & Luding, S. (2014). Recent advances in the simulation of particle-laden flows. The European Physical Journal Special Topics, 223(11), 2253–2267. https://doi.org/10.1140/epjst/e2014-02262-3
dcterms.referencesHtet, M. T. (2018). Design and Performance for 14kW Downdraft Open Core Gasifier. International Journal of Scientific and Research Publications (IJSRP), 8(7), 290–294. https://doi.org/10.29322/ijsrp.8.7.2018.p7946
dcterms.referencesLenis Rodas, Y. A., Morales Rojas, A. D., Jaramillo Marín, S., Salcedo Jiménez, C. y Pérez Bayer, J. F. (2022). Rice husk fixed bed gasification for circular economy in compact rice mills. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44(1), 1875–1887.https://doi.org/10.1080/15567036.2022.2056268
dcterms.referencesLenis, Y. A., Agudelo, A. F., & Pérez, J. F. (2013). Analysis of statistical repeatability of a fi xed bed downdraft biomass gasi fi cation facility. Applied Thermal Engineering, 51(1–2),1006–1016. https://doi.org/10.1016/j.applthermaleng.2012.09.046
dcterms.referencesLenis, Y. a., & Pérez, J. F. (2014). Gasification of Sawdust and Wood Chips in a Fixed Bed under Autothermal and Stable Conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(23), 2555–2565. https://doi.org/10.1080/15567036.2013.875081
dcterms.referencesLenis, Yuhan. (2013). Estudio del proceso de gasificación de biomasa en lecho fijo equicorriente. Universidad de Antioquia.spa
dcterms.referencesLi, Y. H., & Chen, H. H. (2018). Analysis of syngas production rate in empty fruit bunch steam gasification with varying control factors. International Journal of Hydrogen Energy, 43(2), 667–675. https://doi.org/10.1016/j.ijhydene.2017.11.117
dcterms.referencesLin, K. S., Wang, H. P., Lin, C. J., & Juch, C. I. (1998). A process development for gasification of rice husk. Fuel Processing Technology, 55(3), 185–192. https://doi.org/10.1016/S0378-3820(98)00049-6
dcterms.referencesLoha, C., Chattopadhyay, H., Chatterjee, P. K., Loha, C., Chattopadhyay, H., & Chatterjee, P. K. (2013). Energy generation from fluidized bed gasification of rice husk Energy generation from fluidized bed gasification of rice husk. 043111. https://doi.org/10.1063/1.4816496
dcterms.referencesLoutzenhiser, P. G., & Muroyama, A. P. (2017). A review of the state-of-the-art in solar-driven gasification processes with carbonaceous materials. Solar Energy. https://doi.org/10.1016/j.solener.2017.05.008
dcterms.referencesMa, Z., Ye, J., Zhao, C., & Zhang, Q. (2015). Gasification of rice husk in a downdraft gasifier: The effect of equivalence ratio on the gasification performance, properties, and utilization analysis of byproducts of char and tar. BioResources, 10(2), 2888–2902. https://doi. org/10.15376/biores.10.2.2888-2902
dcterms.referencesMakwana, J. P., Pandey, J., & Mishra, G. (2019). Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG).Renewable Energy, 130, 943–951. https://doi.org/10.1016/j.renene.2018.07.011
dcterms.referencesMinisterio de Industria y Comercio - Gobierno de España. (2007). Energías Renovables: Energía de la Biomasa.spa
dcterms.referencesNguyen, H. N., & Ha-duong, M. (2015). Rice husk gasification for electricity generation in Cambodia in December 2014 Rice husk gasification for electricity generation in Cambodia in December 2014 Introductive summary. December 2014, 0–12
dcterms.referencesPérez, J. F., Díaz, O. H., Obando, R. C., & Molina, A. (2008). Diseño conceptual de un gasificador de biomasa de lecho fijo en equicorriente a escala piloto. Tecnológicas Segunda Época, 22, 121–140.spa
dcterms.referencesPérez, J.F., Lenis, Y., Rojas, S., & León, C. (2012). Decentralized power generation through biomass gasification: A technical-economic analysis and implications by reduction of CO 2 emissions | Generación distribuida mediante gasificación de biomasa: Un análisis técnico - económico e implicaciones por reduc. Revista Facultad de Ingenieria, 62.spa
dcterms.referencesPerez, Juan Fernando. (2009). Modelado unidimensional del proceso de gasificación de biomasa lignocelulósica en lechos empacados en equicorriente. Universidad de Valladolid.spa
dcterms.referencesPérez, J. F. y Osorio Vélez, L. F. (2014). Biomasa forestal plantada como alternativa energética. Editorial Universidad de Antioquia.spa
dcterms.referencesPorteiro, J., Patiño, D., Collazo, J., Granada, E., Moran, J. y Miguez, J. L. (2010). Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor. Fuel, 89(1), 26–35. https://doi.org/10.1016/j.fuel.2009.01.024
dcterms.referencesPorteiro, J., Patiño, D., Moran, J. y Granada, E. (2010). Study of a Fixed-Bed Biomass Combustor: Influential Parameters on Ignition Front Propagation Using Parametric Analysis. Energy & Fuels, 24(7), 3890–3897. https://doi.org/10.1021/ef100422y
dcterms.referencesRaman, P., Ram, N. K. & Gupta, R. (2013). A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis. Energy, 54, 302–314. https://doi.org/10.1016/j.energy.2013.03.019
dcterms.referencesReed, T. B., & Golden, A. (1988). Handbook of Biomass Downdraft Gasifier Engine Systems. SERI . U.S. Department of Energy, March, 148. https://doi.org/10.2172/5206099
dcterms.referencesRuiz, J. A. A., Juárez, M. C. C., Morales, M. P. P., Muñoz, P. y Mendívil, M. A. A. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews, 18(0), 174–183. https://doi.org/http://dx.doi.org/10.1016/j.rser.2012.10.021
dcterms.referencesSansaniwal, S. K., Pal, K., Rosen, M. A. & Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. 72(December 2015), 363–384. https://doi.org/10.1016/j.rser.2017.01.038
dcterms.referencesSusastriawan, A., & Saptoadi, H. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. 76(March), 989–1003.
dcterms.referencesSusastriawan, A., Saptoadi, H. & Purnomo. (2018). Design and experimental study of pilot scale throat-less downdraft gasifier fed by rice husk and wood sawdust. International Journal of Sustainable Energy, 37(9), 873–885. https://doi.org/10.1080/14786451.2017.1383992
dcterms.referencesSusastriawan, A., Saptoadi, H. & Purnomo. (2019a). Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: Rice husk, sawdust, and their mixture. 34(October 2018), 27–34. https://doi.org/10.1016/j.seta.2019.04.008
dcterms.references(2019b). Effect of tuyer distance above grate on propagation front and performance of downdraft gasifier with the feedstock of rice husk. Renewable Energy, 134, 1034–1041. https://doi.org/10.1016/j.renene.2018.11.110
dcterms.referencesThe International Bank. (1999). Energy from Biomass a Review of Combustion and Gasification Technologies.
dcterms.referencesTinaut, F. V, Melgar, A., Pérez, J. F., & Horrillo, A. (2008). Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Processing Technology, 89(11), 1076–1089. https://doi.org/10.1016/j.fuproc.2008.04.010
dcterms.referencesVerdeza, A., Lenis, Y. A., Bula, A., Mendoza, J. & Gomez, R. (2019). Performance Analysis of a Commercial Fixed Bed Downdraft Gasifier Using Palm Kernel Shells. 9(December), 79–88.
dcterms.referencesYoon, S. J., Son, Y. Il, Kim, Y. K. & Lee, J. G. (2012). Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, 42, 163–167. https://doi.org/10.1016/j.renene.2011.08.028
dcterms.referencesZhang, G., Liu, H., Wang, J., & Wu, B. (2018). Catalytic gasification characteristics of rice husk with calcined dolomite. Energy, 165, 1173–1177. https://doi.org/10.1016/j.energy.2018.10.030
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.citationedition1a.spa
oaire.fundernameFondo Editorial Pascual Bravospa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Analisis-y-diseno-de-sistemas-termicos (1).pdf
Size:
9.48 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: