Por favor, use este identificador para citar o enlazar este ítem:
https://repositorio.pascualbravo.edu.co/handle/pascualbravo/1845
Registro completo de metadatos
Campo DC | Valor | Lengua/Idioma |
---|---|---|
dc.contributor.author | Olmos Villalba, Luis Carlos | - |
dc.contributor.author | Hincapié Montoya, Jhon Fredy | - |
dc.contributor.author | Delgado Mejía, Álvaro | - |
dc.contributor.author | Lenis Rodas, Yuhan Arley | - |
dc.contributor.author | Morales Rojas, Andrés David | - |
dc.date.accessioned | 2023-03-08T16:48:12Z | - |
dc.date.available | 2023-03-08T16:48:12Z | - |
dc.date.issued | 2022-12-22 | - |
dc.identifier.isbn | 978-958-53606-7-9 | - |
dc.identifier.uri | https://repositorio.pascualbravo.edu.co/handle/pascualbravo/1845 | - |
dc.description.abstract | En este libro, podrás encontrar metodologías para el diseño y análisis de sistemas térmicos, especialmente para gasificadores y disipadores de calor. Metodologías que van de la mano de herramientas computacionales y de nuevas estrategias que permiten optimizar estos sistemas. En los primeros dos capítulos se presentan dos métodos para mejorar el desempeño térmico de disipadores de calor; jugando con la modificación del área superficial, en los que, además, se realiza un análisis térmico, mediante software de fuente abierta y comercial con el objetivo de mostrar las bondades de cada uno. En el tercer capítulo se plantea un estudio detallado para el diseño y análisis de gasificadores de cascarilla de arroz de lecho fijo, en el que se definen algunas consideraciones derivadas de la experiencia acumulada por el equipo de investigadores de la Institución Universitaria Pascual Bravo, donde se dan a conocer aquellos parámetros característicos del proceso. | spa |
dc.description.sponsorship | Fondo Editorial Pascual Bravo | spa |
dc.format.extent | 90 | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Fondo Editorial Pascual Bravo | spa |
dc.relation.ispartofseries | Investigación; | - |
dc.rights | info:eu-repo/semantics/openAccess | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nd/4.0/ | spa |
dc.source | Institución Universitaria Pascual Bravo | spa |
dc.title | Análisis y diseño de sistemas térmicos Aplicaciones en disipadores de calor y gasificadores de biomasa | spa |
dcterms.references | Ahmed, H. E. Kherbeet, A. Sh. & Ahmed, M. I. (2018). Optimization of thermal design of heatsinks: A review. International Journal of Heat and Mass Transfer, 118, 129–153. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.099 | - |
dcterms.references | Arif, M., Kango, S. & Shukla, D. K. (2022). Analysis of textured journal bearing with slip boundary condition and pseudoplastic lubricants. International Journal of Mechanical Sciences, 228, 107458. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2022.107458 | - |
dcterms.references | Ballesteros, L. M., Zuluaga, E., Cuervo, P., Rudas, J. S. & Toro, A. (2021). Tribological behavior of polymeric 3D-printed surfaces with deterministic patterns inspired in snake skin morphology. Surface Topography: Metrology and Properties, 9(1), 014002. https://doi.org/10.1088/2051-672x/abe211 | - |
dcterms.references | Belhocine, A. & Bouchetara, M. (2013). Thermal behavior of full and ventilated disc brakes of vehicles. Journal of Mechanical Science and Technology, 26. https://doi.org/10.1007/s12206-012-0840-6 | - |
dcterms.references | Cengel, Y. A. & Ghajar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (McGraw-Hill, Ed.; 5th ed.). McGraw-Hill. | - |
dcterms.references | Cucumo, M., Ferraro, V., Kaliakatsos, D. & Marinelli, V. (2014). Theoretical and experimental analysis of the performances of a heat sink with vertical orientation in natural convection. International Journal of Energy and Environmental Engineering, 8. https://doi.org/10.1007/s40095-014-0144-y | - |
dcterms.references | Database, T. R. (2021). Python regius (SHAW, 1802). | - |
dcterms.references | Gachot, C., Rosenkranz, A., Hsu, S. M. & Costa, H. L. (2017). A critical assessment of surface texturing for friction and wear improvement. Wear, 372–373, 21–41. https://doi.org/https://doi.org/10.1016/j.wear.2016.11.020 | - |
dcterms.references | Garimella, S. V, Fleischer, A. S., Murthy, J. Y., Keshavarzi, A., Prasher, R., Patel, C., Bhavnani, S. H., Venkatasubramanian, R., Mahajan, R., Joshi, Y., Sammakia, B., Myers, B. A., Chorosinski, L., Baelmans, M., Sathyamurthy, P. & Raad, P. E. (2008). Thermal Challenges in Next-Generation Electronic Systems. IEEE Transactions on Components and Packaging Technologies, 31(4), 801–815. https://doi.org/10.1109/TCAPT.2008.2001197 | - |
dcterms.references | Garro-Acón, S., Díaz-Espinoza, L. A., Liang, J., Martínez-Hernández, F., Meneses-Fuentes, W., Ortega-Padilla, H., Ramírez-Chaves, G. & Stradi-Granados, B. (2012). Modelación y simulación de disipadores de calor para procesadores de computadora en COMSOL Multiphysics. Revista Tecnología en Marcha, 25(3 SE-Artículo científico). https://doi.org/10.18845/tm.v25i3.459 | spa |
dcterms.references | Gurrum, S., Suman, S., Joshi, Y., & Fedorov, A. (2003). Thermal Issues in Next Generation Integrated Circuits (pp. 659–664). https://doi.org/10.1115/IPACK2003-35309 | - |
dcterms.references | Gururatana, S. (2012). Heat Transfer Augmentation for Electronic Cooling. American Journal of Applied Sciences, 9, 436–439. https://doi.org/10.3844/ajassp.2012.436.439 | - |
dcterms.references | Ismail, F., Rashid, M. A. I. & Mahbub, M. (2011). CFD Analysis for Optimum Thermal Design of Carbon Nanotube Based Micro-Channel Heatsink. Engineering Journal, 15, 11–22. https://doi.org/10.4186/ej.2011.15.4.11 | - |
dcterms.references | Khattak, Z. & Ali, H. M. (2019). Air cooled heat sink geometries subjected to forced flow: A critical review. International Journal of Heat and Mass Transfer, 130, 141–161. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.048 | - |
dcterms.references | Lu, L., Zhang, Z., Guan, Y. & Zheng, H. Y. (2018). Enhancement of Heat Dissipation by Laser Micro Structuring for LED Module. Polymers, 10, 886. https://doi.org/10.3390/polym10080886 | - |
dcterms.references | MatMatch. (2022). AA Standards Grade 6062. https://matmatch.com/es/materials/alky160620790-aa-standards-grade-6062 | - |
dcterms.references | Narasimhan, S. & Majdalani, J. (2002). Characterization of compact heat sink models in natural convection. Components and Packaging Technologies, IEEE Transactions On, 25, 78–86. https://doi.org/10.1109/6144.991179 | - |
dcterms.references | Ramírez-Gil, F. J., Delgado-Mejía, Á., Foronda-Obando, E. y Olmos-Villalba, L. C. (2022). Thermal finite element analysis of complex heat sinks using open source tools and high-performance computing. Revista Facultad de Ingeniería Universidad de Antioquia, 0 SE-Research paper. https://doi.org/10.17533/udea.redin.20220888 | - |
dcterms.references | Sato, A. I., Altemani, C. A. C. & Scalon, V. L. (2020). MEAN NUSSELT NUMBER CORRELATION FOR TISE HEATSINK THERMAL DESIGN. Revista de Engenharia Térmica; Vol 19, No 1 (2020) DO - 10.5380/Reterm.V19i1.76427 | - |
dcterms.references | Staliulionis, Z., Zhang, Z., Pittini, R., Andersen, M., Tarvydas, P. & Noreika, A. (2014). Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications. Elektronika Ir Elektrotechnika, 20, 49–54. https://doi.org/10.5755/j01.eee.20.1.6167 | - |
dcterms.references | Tarvydas, P., Noreika, A. & Staliulionis, Z. (2013). Analysis of Heat Sink Modelling Performance. Elektronika Ir Elektrotechnika, 19(3 SE-), 43–46. https://doi.org/10.5755/j01.eee.19.3.3695 | - |
dcterms.references | Unni, R. & Majali, V. (2019). A review on rectangular heat sinks under natural convection | - |
dcterms.references | Ventola, L., Scaltrito, L., Ferrero, S., Maccioni, G., Chiavazzo, E. & Asinari, P. (2014). Micro-structured rough surfaces by laser etching for heat transfer enhancement on flush mounted heat sinks. Journal of Physics: Conference Series, 525, 12017. https://doi.org/10.1088/1742-6596/525/1/012017 | - |
dcterms.references | Wu, Z., Bao, H., Xing, Y. & Liu, L. (2021). Tribological characteristics and advanced processing methods of textured surfaces: a review. The International Journal of Advanced Manufacturing Technology, 114. https://doi.org/10.1007/s00170-021-06954-2 | - |
dcterms.references | Ahmed, H. E. Kherbeet, A. Sh. & Ahmed, M. I. (2018). Optimization of thermal design of heat sinks: A review. International Journal of Heat and Mass Transfer, 118, 129–153. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.099 | - |
dcterms.references | Arif, M., Kango, S. & Shukla, D. K. (2022). Analysis of textured journal bearing with slip boundary condition and pseudoplastic lubricants. International Journal of Mechanical Sciences,228, 107458. https://doi.org/https://doi.org/10.1016/j.ijmecsci.2022.107458 | - |
dcterms.references | Ballesteros, L. M., Zuluaga, E., Cuervo, P., Rudas, J. S. & Toro, A. (2021). Tribological behavior of polymeric 3D-printed surfaces with deterministic patterns inspired in snake skin morphology. Surface Topography: Metrology and Properties, 9(1), 014002. https://doi.org/10.1088/2051-672x/abe211 | - |
dcterms.references | Belhocine, A. & Bouchetara, M. (2013). Thermal behavior of full and ventilated disc brakes of vehicles. Journal of Mechanical Science and Technology, 26. https://doi.org/10.1007/s12206-012-0840-6 | - |
dcterms.references | Cengel, Y. A. & Ghajar, A. J. (2014). Heat and mass transfer: Fundamentals and applications (McGraw-Hill, Ed.; 5th ed.). McGraw-Hill. | - |
dcterms.references | Cucumo, M., Ferraro, V., Kaliakatsos, D. & Marinelli, V. (2014). Theoretical and experimental analysis of the performances of a heat sink with vertical orientation in natural convection. International Journal of Energy and Environmental Engineering, 8. https://doi.org/10.1007/s40095-014-0144-y | - |
dcterms.references | Database, T. R. (2021). Python regius (SHAW, 1802). | - |
dcterms.references | Gachot, C., Rosenkranz, A., Hsu, S. M. & Costa, H. L. (2017). A critical assessment of surface texturing for friction and wear improvement. Wear, 372–373, 21–41. https://doi.org/https://doi.org/10.1016/j.wear.2016.11.020 | - |
dcterms.references | Garimella, S. V, Fleischer, A. S., Murthy, J. Y., Keshavarzi, A., Prasher, R., Patel, C., Bhavnani, S. H., Venkatasubramanian, R., Mahajan, R., Joshi, Y., Sammakia, B., Myers, B. A., Chorosinski, L., Baelmans, M., Sathyamurthy, P. & Raad, P. E. (2008). Thermal Challenges in Next-Generation Electronic Systems. IEEE Transactions on Components and Packaging Technologies, 31(4), 801–815. https://doi.org/10.1109/TCAPT.2008.2001197 | - |
dcterms.references | Garro-Acón, S., Díaz-Espinoza, L. A., Liang, J., Martínez-Hernández, F., Meneses-Fuentes, W., Ortega-Padilla, H., Ramírez-Chaves, G. & Stradi-Granados, B. (2012). Modelación y simulación de disipadores de calor para procesadores de computadora en COMSOL Multiphysics. Revista Tecnología en Marcha, 25(3 SE-Artículo científico). https://doi.org/10.18845/tm.v25i3.459 | spa |
dcterms.references | Gurrum, S., Suman, S., Joshi, Y., & Fedorov, A. (2003). Thermal Issues in Next Generation Integrated Circuits (pp. 659–664). https://doi.org/10.1115/IPACK2003-35309 | - |
dcterms.references | Gururatana, S. (2012). Heat Transfer Augmentation for Electronic Cooling. American Journal of Applied Sciences, 9, 436–439. https://doi.org/10.3844/ajassp.2012.436.439 | - |
dcterms.references | Ismail, F., Rashid, M. A. I. & Mahbub, M. (2011). CFD Analysis for Optimum Thermal Design of Carbon Nanotube Based Micro-Channel Heatsink. Engineering Journal, 15, 11–22. https://doi.org/10.4186/ej.2011.15.4.11 | - |
dcterms.references | Khattak, Z. & Ali, H. M. (2019). Air cooled heat sink geometries subjected to forced flow: A critical review. International Journal of Heat and Mass Transfer, 130, 141–161. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2018.08.048 | - |
dcterms.references | Lu, L., Zhang, Z., Guan, Y. & Zheng, H. Y. (2018). Enhancement of Heat Dissipation by Laser Micro Structuring for LED Module. Polymers, 10, 886. https://doi.org/10.3390/polym10080886 | - |
dcterms.references | MatMatch. (2022). AA Standards Grade 6062. https://matmatch.com/es/materials/alky160620790-aa-standards-grade-6062 | - |
dcterms.references | Narasimhan, S. & Majdalani, J. (2002). Characterization of compact heat sink models in natural convection. Components and Packaging Technologies, IEEE Transactions On, 25, 78–86. https://doi.org/10.1109/6144.991179 | - |
dcterms.references | Ramírez-Gil, F. J., Delgado-Mejía, Á., Foronda-Obando, E. y Olmos-Villalba, L. C. (2022). Thermal finite element analysis of complex heat sinks using open source tools and high-performance computing. Revista Facultad de Ingeniería Universidad de Antioquia, 0 SE-Research paper. https://doi.org/10.17533/udea.redin.20220888 | - |
dcterms.references | Sato, A. I., Altemani, C. A. C. & Scalon, V. L. (2020). MEAN NUSSELT NUMBER CORRELATION FOR TISE HEATSINK THERMAL DESIGN. Revista de Engenharia Térmica; Vol 19, No 1 (2020) DO - 10.5380/Reterm.V19i1.76427 | - |
dcterms.references | Staliulionis, Z., Zhang, Z., Pittini, R., Andersen, M., Tarvydas, P. & Noreika, A. (2014). Investigation of Heat Sink Efficiency for Electronic Component Cooling Applications. Elektronika Ir Elektrotechnika, 20, 49–54. https://doi.org/10.5755/j01.eee.20.1.6167 | - |
dcterms.references | Tarvydas, P., Noreika, A. & Staliulionis, Z. (2013). Analysis of Heat Sink Modelling Performance. Elektronika Ir Elektrotechnika, 19(3 SE-), 43–46. https://doi.org/10.5755/j01.eee.19.3.3695 | - |
dcterms.references | Unni, R. & Majali, V. (2019). A review on rectangular heat sinks under natural convection | - |
dcterms.references | Ventola, L., Scaltrito, L., Ferrero, S., Maccioni, G., Chiavazzo, E. & Asinari, P. (2014). Micro-structured rough surfaces by laser etching for heat transfer enhancement on flush mounted heat sinks. Journal of Physics: Conference Series, 525, 12017. https://doi.org/10.1088/1742-6596/525/1/012017 | - |
dcterms.references | Wu, Z., Bao, H., Xing, Y. & Liu, L. (2021). Tribological characteristics and advanced processing methods of textured surfaces: a review. The International Journal of Advanced Manufacturing Technology, 114. https://doi.org/10.1007/s00170-021-06954-2 | - |
dcterms.references | Basu, P. (2010). Gasification Theory and Modeling of Gasifiers. In Biomass Gasification Design Handbook (pp. 117–165). Elsevier. https://doi.org/10.1016/B978-0-12-374988-8.00005-2 | - |
dcterms.references | Bharath, M., Raghavan, V., Prasad, B. V. S. S. S. & Chakravarthy, S. R. (2018). Co-gasification of Indian rice husk and Indian coal with high-ash in bubbling fluidized bed gasification reactor. Applied Thermal Engineering, 137(March), 608–615. https://doi.org/10.1016/j.applthermaleng.2018.04.035 | - |
dcterms.references | Bridgwater, A. V. V. (1995). The technical and economic feasibility of biomass gasification for power generation. Fuel, 74(5), 631–653. https://doi.org/10.1016/0016-2361(95)00001-L | - |
dcterms.references | Castello, A. (2014). Diseño de un reactor continuo de gasificación de biomasa. Universidad de Chile | spa |
dcterms.references | Fernández, J. (2007). Las energías renovables. Energías renovables-Energía de la biomasa,(1), 20 | spa |
dcterms.references | Gokon, N., Ono, R., Hatamachi, T., Liuyun, L., Kim, H. J. & Kodama, T. (2012). CO2 gasification of coal cokes using internally circulating fluidized bed reactor by concentrated Xelight irradiation for solar gasification. International Journal of Hydrogen Energy, 37(17),12128–12137. https://doi.org/10.1016/j.ijhydene.2012.05.133 | - |
dcterms.references | Harting, J., Frijters, S., Ramaioli, M., Robinson, M., Wolf, D. E. & Luding, S. (2014). Recent advances in the simulation of particle-laden flows. The European Physical Journal Special Topics, 223(11), 2253–2267. https://doi.org/10.1140/epjst/e2014-02262-3 | - |
dcterms.references | Htet, M. T. (2018). Design and Performance for 14kW Downdraft Open Core Gasifier. International Journal of Scientific and Research Publications (IJSRP), 8(7), 290–294. https://doi.org/10.29322/ijsrp.8.7.2018.p7946 | - |
dcterms.references | Lenis Rodas, Y. A., Morales Rojas, A. D., Jaramillo Marín, S., Salcedo Jiménez, C. y Pérez Bayer, J. F. (2022). Rice husk fixed bed gasification for circular economy in compact rice mills. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 44(1), 1875–1887.https://doi.org/10.1080/15567036.2022.2056268 | - |
dcterms.references | Lenis, Y. A., Agudelo, A. F., & Pérez, J. F. (2013). Analysis of statistical repeatability of a fi xed bed downdraft biomass gasi fi cation facility. Applied Thermal Engineering, 51(1–2),1006–1016. https://doi.org/10.1016/j.applthermaleng.2012.09.046 | - |
dcterms.references | Lenis, Y. a., & Pérez, J. F. (2014). Gasification of Sawdust and Wood Chips in a Fixed Bed under Autothermal and Stable Conditions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 36(23), 2555–2565. https://doi.org/10.1080/15567036.2013.875081 | - |
dcterms.references | Lenis, Yuhan. (2013). Estudio del proceso de gasificación de biomasa en lecho fijo equicorriente. Universidad de Antioquia. | spa |
dcterms.references | Li, Y. H., & Chen, H. H. (2018). Analysis of syngas production rate in empty fruit bunch steam gasification with varying control factors. International Journal of Hydrogen Energy, 43(2), 667–675. https://doi.org/10.1016/j.ijhydene.2017.11.117 | - |
dcterms.references | Lin, K. S., Wang, H. P., Lin, C. J., & Juch, C. I. (1998). A process development for gasification of rice husk. Fuel Processing Technology, 55(3), 185–192. https://doi.org/10.1016/S0378-3820(98)00049-6 | - |
dcterms.references | Loha, C., Chattopadhyay, H., Chatterjee, P. K., Loha, C., Chattopadhyay, H., & Chatterjee, P. K. (2013). Energy generation from fluidized bed gasification of rice husk Energy generation from fluidized bed gasification of rice husk. 043111. https://doi.org/10.1063/1.4816496 | - |
dcterms.references | Loutzenhiser, P. G., & Muroyama, A. P. (2017). A review of the state-of-the-art in solar-driven gasification processes with carbonaceous materials. Solar Energy. https://doi.org/10.1016/j.solener.2017.05.008 | - |
dcterms.references | Ma, Z., Ye, J., Zhao, C., & Zhang, Q. (2015). Gasification of rice husk in a downdraft gasifier: The effect of equivalence ratio on the gasification performance, properties, and utilization analysis of byproducts of char and tar. BioResources, 10(2), 2888–2902. https://doi. org/10.15376/biores.10.2.2888-2902 | - |
dcterms.references | Makwana, J. P., Pandey, J., & Mishra, G. (2019). Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG).Renewable Energy, 130, 943–951. https://doi.org/10.1016/j.renene.2018.07.011 | - |
dcterms.references | Ministerio de Industria y Comercio - Gobierno de España. (2007). Energías Renovables: Energía de la Biomasa. | spa |
dcterms.references | Nguyen, H. N., & Ha-duong, M. (2015). Rice husk gasification for electricity generation in Cambodia in December 2014 Rice husk gasification for electricity generation in Cambodia in December 2014 Introductive summary. December 2014, 0–12 | - |
dcterms.references | Pérez, J. F., Díaz, O. H., Obando, R. C., & Molina, A. (2008). Diseño conceptual de un gasificador de biomasa de lecho fijo en equicorriente a escala piloto. Tecnológicas Segunda Época, 22, 121–140. | spa |
dcterms.references | Pérez, J.F., Lenis, Y., Rojas, S., & León, C. (2012). Decentralized power generation through biomass gasification: A technical-economic analysis and implications by reduction of CO 2 emissions | Generación distribuida mediante gasificación de biomasa: Un análisis técnico - económico e implicaciones por reduc. Revista Facultad de Ingenieria, 62. | spa |
dcterms.references | Perez, Juan Fernando. (2009). Modelado unidimensional del proceso de gasificación de biomasa lignocelulósica en lechos empacados en equicorriente. Universidad de Valladolid. | spa |
dcterms.references | Pérez, J. F. y Osorio Vélez, L. F. (2014). Biomasa forestal plantada como alternativa energética. Editorial Universidad de Antioquia. | spa |
dcterms.references | Porteiro, J., Patiño, D., Collazo, J., Granada, E., Moran, J. y Miguez, J. L. (2010). Experimental analysis of the ignition front propagation of several biomass fuels in a fixed-bed combustor. Fuel, 89(1), 26–35. https://doi.org/10.1016/j.fuel.2009.01.024 | - |
dcterms.references | Porteiro, J., Patiño, D., Moran, J. y Granada, E. (2010). Study of a Fixed-Bed Biomass Combustor: Influential Parameters on Ignition Front Propagation Using Parametric Analysis. Energy & Fuels, 24(7), 3890–3897. https://doi.org/10.1021/ef100422y | - |
dcterms.references | Raman, P., Ram, N. K. & Gupta, R. (2013). A dual fired downdraft gasifier system to produce cleaner gas for power generation: Design, development and performance analysis. Energy, 54, 302–314. https://doi.org/10.1016/j.energy.2013.03.019 | - |
dcterms.references | Reed, T. B., & Golden, A. (1988). Handbook of Biomass Downdraft Gasifier Engine Systems. SERI . U.S. Department of Energy, March, 148. https://doi.org/10.2172/5206099 | - |
dcterms.references | Ruiz, J. A. A., Juárez, M. C. C., Morales, M. P. P., Muñoz, P. y Mendívil, M. A. A. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews, 18(0), 174–183. https://doi.org/http://dx.doi.org/10.1016/j.rser.2012.10.021 | - |
dcterms.references | Sansaniwal, S. K., Pal, K., Rosen, M. A. & Tyagi, S. K. (2017). Recent advances in the development of biomass gasification technology: A comprehensive review. 72(December 2015), 363–384. https://doi.org/10.1016/j.rser.2017.01.038 | - |
dcterms.references | Susastriawan, A., & Saptoadi, H. (2017). Small-scale downdraft gasifiers for biomass gasification: A review. 76(March), 989–1003. | - |
dcterms.references | Susastriawan, A., Saptoadi, H. & Purnomo. (2018). Design and experimental study of pilot scale throat-less downdraft gasifier fed by rice husk and wood sawdust. International Journal of Sustainable Energy, 37(9), 873–885. https://doi.org/10.1080/14786451.2017.1383992 | - |
dcterms.references | Susastriawan, A., Saptoadi, H. & Purnomo. (2019a). Comparison of the gasification performance in the downdraft fixed-bed gasifier fed by different feedstocks: Rice husk, sawdust, and their mixture. 34(October 2018), 27–34. https://doi.org/10.1016/j.seta.2019.04.008 | - |
dcterms.references | (2019b). Effect of tuyer distance above grate on propagation front and performance of downdraft gasifier with the feedstock of rice husk. Renewable Energy, 134, 1034–1041. https://doi.org/10.1016/j.renene.2018.11.110 | - |
dcterms.references | The International Bank. (1999). Energy from Biomass a Review of Combustion and Gasification Technologies. | - |
dcterms.references | Tinaut, F. V, Melgar, A., Pérez, J. F., & Horrillo, A. (2008). Effect of biomass particle size and air superficial velocity on the gasification process in a downdraft fixed bed gasifier. An experimental and modelling study. Fuel Processing Technology, 89(11), 1076–1089. https://doi.org/10.1016/j.fuproc.2008.04.010 | - |
dcterms.references | Verdeza, A., Lenis, Y. A., Bula, A., Mendoza, J. & Gomez, R. (2019). Performance Analysis of a Commercial Fixed Bed Downdraft Gasifier Using Palm Kernel Shells. 9(December), 79–88. | - |
dcterms.references | Yoon, S. J., Son, Y. Il, Kim, Y. K. & Lee, J. G. (2012). Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renewable Energy, 42, 163–167. https://doi.org/10.1016/j.renene.2011.08.028 | - |
dcterms.references | Zhang, G., Liu, H., Wang, J., & Wu, B. (2018). Catalytic gasification characteristics of rice husk with calcined dolomite. Energy, 165, 1173–1177. https://doi.org/10.1016/j.energy.2018.10.030 | - |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.type.hasversion | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
dc.publisher.faculty | Facultad de Ingeniería | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_2f33 | spa |
dc.type.redcol | https://purl.org/redcol/resource_type/LIB | spa |
dc.type.local | Libro | spa |
dc.subject.unesco | Ingeniería térmica | - |
dc.rights.creativecommons | https://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.publisher.place | Medellín | spa |
oaire.version | http://purl.org/coar/version/c_970fb48d4fbd8a85 | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
dc.type.driver | info:eu-repo/semantics/book | spa |
dc.subject.proposal | Ingeniería, calor, biomasa, térmica, energía | spa |
dc.subject.keyword | Engineering, heat, biomass, thermal, energy | spa |
oaire.citationedition | 1a. | spa |
oaire.fundername | Fondo Editorial Pascual Bravo | spa |
Aparece en las colecciones: | Libros Electrónicos |
Ficheros en este ítem:
Fichero | Descripción | Tamaño | Formato | |
---|---|---|---|---|
Analisis-y-diseno-de-sistemas-termicos (1).pdf | 9,71 MB | Adobe PDF | Visualizar/Abrir |
Este ítem está protegido por copyright original |
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons